Information Geometric Approach to Multisensor Estimation Fusion

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised multisensor data fusion approach

A new iterative approach of multisensor data fusion based on the Dempster-Shafer formalism is presented. Mass functions, formalized by a Gaussian model, are estimated at each iteration using the output fused image and the source images. The effectiveness of the method is demonstrated on synthetic images.

متن کامل

Estimation Level Fusion in Multisensor Environment

The integration and fusion of information, from a combination of different types of instruments (sensors), is often used in the design of control systems. Typical applications that can benefit the use of multiple sensors are industrial tasks, military command, mobile robot navigation, multi-target tracking, and aircraft navigation. In recent years, there has been growing interest to fuse multis...

متن کامل

A denoising approach to multisensor signal estimation

Multisensor array processing of noisy measurements has received considerable attention in many areas of signal processing. The optimal processing techniques developed so far usually assume that the signal and noise processes are at least wide sense stationary, yet a need exists for efficient, effective methods for processing nonstationary signals. Although wavelets have proven to be useful tool...

متن کامل

Approaches to Multisensor Data Fusion

s part of an Office of Naval Research–funded science and technology development task, APL is developing an identification (ID) sensor data fusion testbed. The testbed is driven by an APL-modified version of the Joint Composite Tracking Network pilot benchmark called the Composite Combat ID Analysis Testbed (CAT). The CAT provides accurate tracking for realistic scenarios involving multiple targ...

متن کامل

Information Geometric Density Estimation

We investigate kernel density estimation where the kernel function varies from point to point. Density estimation in the input space means to find a set of coordinates on a statistical manifold. This novel perspective helps to combine efforts from information geometry and machine learning to spawn a family of density estimators. We present example models with simulations. We discuss the princip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2019

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2018.2879035